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We consider the deformation and breakup of a non-Newtonian slender drop in a
Newtonian liquid, subject to an axisymmetric extensional flow, and the influence of
inertia in the continuous phase. The non-Newtonian fluid inside the drop is described
by the simple power-law model and the unsteady deformation of the drop is repre-
sented by a single partial differential equation. The steady-state problem is governed
by four parameters: the capillary number; the viscosity ratio; the external Reynolds
number; and the exponent characterizing the power-law model for the non-Newtonian
drop. For Newtonian drops, as inertia increases, drop breakup is facilitated. However,
for shear thinning drops, the influence of increasing inertia results first in preven-
ting and then in facilitating drop breakup. Multiple stationary solutions were also
found and a stability analysis has been performed in order to distinguish between
stable and unstable stationary states.

1. Introduction
The subject of deformation and breakup of a drop suspended in another fluid has

been studied extensively because of its importance to many physical processes. High-
viscosity liquids such as polymer melts, foods and biological materials are usually
processed in rotary equipment under conditions in which the flow contains shear
or extensional components. A drop present in these types of flow will be deformed.
Under some conditions, highly elongated drops can be obtained and, furthermore, if
the strength of the flow exceeds some critical value, the drop will break into two or
more fragments.

The deformation of a Newtonian drop in a Newtonian liquid under creeping flow
conditions is governed by two dimensionless numbers: the capillary number Ca, the
ratio of the external viscous force that tends to deform the drop to the surface tension
force that tends to keep the drop spherical; and λ, the ratio of the viscosity of the
drop to that of the external fluid. In general, the literature distinguishes between small
deformations at Ca � 1, and large deformations at Ca � 1 and λ� 1. Reviews by
Rallison (1984) and Stone (1994) discuss many applications of this subject.

† Author to whom correspondence should be addressed: chemf@nus.edu.sg.
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Taylor (1964) was the first to suggest a theoretical model for the deformation and
breakup of a slender drop in an axisymmetric extensional and creeping flow. The
theory, which was later refined by Buckmaster (1972, 1973), Acrivos & Lo (1978)
and others, shows that the slender Newtonian drop has a parabolic shape with
pointed ends. Also, according to the theory, the critical capillary number required for
breakup increases as the viscosity ratio decreases. However, for a bubble (an inviscid
drop) where λ= 0, a stable steady shape is always possible, and breakup was not
predicted.

Acrivos & Lo (1978) argued that the Reynolds number based on the length of a
long and slender drop may be not small, and thus, inertial effects should be taken into
account. As a first step, they included the effects of inertia in the fluid outside the drop.
The modified theory predicts that, contrary to the creeping flow case, a bubble (λ= 0)
can be broken. They also presented a solution for a slightly viscous drop (λ �= 0), which
provides the critical extensional rate for burst. The results suggest that the burst of a
drop can be enhanced by increasing the Reynolds number. Brady & Acrivos (1982)
considered the effects of inertia inside and outside the drop. They found that internal
inertia has a relatively weak effect and that the zero-internal-inertia results can be
used to predict drop breakup.

A feature common to all the deformation problems of slender drops discussed above
is the existence of multiple stationary solutions. For the case of a bubble or a drop in
a Newtonian liquid under creeping flow conditions, Acrivos & Lo (1978) performed a
linear stability analysis on the dynamic governing equation. By expressing the solution
as a linear combination of the steady-state solution plus a small unsteady perturbation
together with separation of variables, they were able to distinguish between stable and
unstable stationary shapes. The stability analysis for the external inertia case was not
reported there, and it will be presented in this work. Following Acrivos & Lo (1978),
Hinch (1980) considered the general initial-value problem for the evolution of the
shape of a bubble. Subsequently, Sherwood (1984) extended the previous theoretical
analyses to the case of a nonlinear flow with extensional components, but without
external inertia. His time-dependent studies for the case of a Newtonian drop, reveal
the possible existence of different breakup mechanisms.

The discussion above has been limited to large deformations in systems where both
the drop and the fluid outside it are Newtonian. In many industrial applications,
such as in mixing of polymer blends, this is far from reality. In these processes
non-Newtonian effects such as shear thinning and elasticity are exhibited. In recent
years, attention was given to cases involving drop deformation in non-Newtonian
systems. Unfortunately, the theoretical studies were restricted to small and medium
deformations under creeping flow conditions. In two previous studies we have focused
primarily on slender bodies deforming in linear extensional flow (Favelukis & Nir
2001; Favelukis, Lavrenteva & Nir 2005). In Favelukis et al. (2005), which contains a
summary of the literature published on non-Newtonian systems, we presented a study
of the deformation and breakup of a non-Newtonian slender drop in a Newtonian
liquid in an axisymmetric extensional and creeping flow. The rheology of the drop was
described by the simple power-law model with index n. It is well known that a power-
law fluid does not exist in the general case. However, this simplified rheological model,
which permits analytic manipulations, is useful here in view of the fact that the flow
within most of the volume of the slender drop is dominated by shear components
where the power-law provides a good description of shear thinning or thickening
effects. The report in Favelukis et al. (2005) suggests that only shear thinning (n< 1)
and Newtonian drops (n= 1) can exist. It was also found that, similar to the case
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Figure 1. A slender drop in a simple extensional flow: R(z) is the local radius and L is the
half-length of the drop.

of Newtonian drops, a slender shear thinning drop attains pointed ends. However,
Newtonian drops are more elongated than shear thinning drops when subjected to
the same flow. Furthermore, the critical capillary number for drop breakup increases
as the viscosity ratio decreases and as the power-law index (n) decreases.

In the present paper, we extend our previous theoretical analysis (Favelukis et al.
2005) as follows: (a) inertial effects in the external fluid are included; and (b) a stability
analysis of the obtained shapes is performed. We start this report by presenting the
unsteady governing equations for both the flow inside and outside the drop, where
the simple power-law model is assumed for the non-Newtonian fluid inside the drop.
Next, solutions for a bubble and a Newtonian drop, which include external inertial
effects, as were reported in the literature (Acrivos & Lo 1978), are revisited. Here,
we add several new results to the existing knowledge. We then continue with the
deformation and breakup of a non-Newtonian slender drop in a Newtonian liquid in
an axisymmetric extensional flow. Specifically, we explore the influence of inertia in
the external phase on the breakup of the embedded drop and compare these results
with our previous predictions for creeping flow (Favelukis et al. 2005). We found that
the problem contains multiple solutions; therefore, special attention has been given
to a stability analysis in order to distinguish between stable and unstable stationary
shapes. Finally, conclusions and recommendations for future work are discussed.

2. The governing equations
2.1. The flow outside the drop

Figure 1 describes a slender drop with local radius R(z) and a half-length L positioned
in an axisymmetric extensional flow. The velocity components of the undisturbed flow
are given in cylindrical coordinates by:

vr = − 1
2
Gr, vz = Gz, (1)

where G is the strength of the flow and will be positive in this work.
Following Acrivos & Lo (1978) the velocity components of the disturbed flow are

approximated, for r � R and −L � z � L, by:

vr =
R

r

∂R

∂t
+ G

[
− r

2
+

R

r

(
R

2
+ z

∂R

∂z

)]
, vz = Gz. (2)
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Note that, at this approximation, the axial component of the velocity is not altered
by the presence of a slender drop. The radial disturbed velocity is obtained from the
continuity equation and the kinematic condition in which the normal component of
the surface velocity is set equal to the change of the drop radius with time.

The pressure outside the drop (Pout) can be obtained by substituting the velocity
profile into the Navier–Stokes equations. If the drop is sufficiently slender (R/L � 1),
then the leading order of the pressure outside the drop is (Acrivos & Lo 1978):

Pout = − 1
2
ρG2z2. (3)

2.2. The flow inside the drop

The incompressible non-Newtonian fluid inside the drop is described by the simple
power-law model:

τ = m
∣∣√ 1

2
(γ̇ : γ̇ )

∣∣n−1
γ̇ . (4)

Here, τ is the viscous stress tensor, γ̇ is the rate of deformation tensor and m and n

are model parameters. For a Newtonian fluid n= 1 and m becomes the Newtonian
viscosity. For a shear thinning (pseudoplastic) fluid n< 1 while for a shear thickening
(dilatant) fluid n> 1.

Taylor (1964) approximated the flow inside a slender drop as a Poiseuille flow
in a fluid pipe with a pressure gradient and with an axial velocity of Gz at the
boundary. Furthermore in view of the finding of Brady & Acrivos (1982), we neglect
inertia forces inside the drop. Hence, the velocity profile, for the region 0 � r � R and
0 � z � L, is readily obtained by combining (2), (4) and the equation of motion to
give (Favelukis et al. 2005):

vz = Gz −
(

n

1 + n

)(
R

2m

∂Pin

∂z

)1/n

R

[
1 −

(
r

R

)1+1/n]
. (5)

The volumetric flow rate through each axial cross-section along the drop can be
obtained by integrating the velocity profile (Favelukis et al. 2005):

Q =

∫ R

0

vz2πr dr = πR2

[
Gz −

(
n

1 + 3n

)(
R

2m

∂Pin

∂z

)1/n

R

]
. (6)

This quantity is balanced by the rate of volume change, measured from the centre of
the drop, at z =0, to that cross-section position:

Q = −π
∂

∂t

∫ z

0

R2 dz. (7)

Note also that, at steady state, the volumetric flow rate vanishes everywhere. Equating
the last two rates results in an expression for the pressure profile inside the drop:

Pin = Pin(0, t) + 2wmGn

∫ z

0

1

R

[
z

R
+

1

R3

∂

∂(Gt)

∫ z

0

R2 dz

]n

dz, (8)

where:

w(n) =

(
1 + 3n

n

)n

. (9)

Here, Pin is the pressure inside the drop and Pin(0, t) is the unknown pressure at
the centre of the drop. For an incompressible bubble (an inviscid drop), m = 0, the
pressure inside the bubble is uniform and at steady state it is also constant.
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2.3. The normal stress balance

A normal stress balance at the surface of the slender drop can be written as follows:

Pin − Pout − τrr,in + τrr,out =
σ

R
, (10)

where σ is the surface tension. The subscripts in and out denote inside and outside
of the drop, respectively. Slender drops are obtained when the viscosity of the drop is
much smaller than the viscosity of the liquid. It follows that the normal viscous stress
inside the drop can be neglected when compared to the normal viscous stress outside
the drop. Furthermore, the normal viscous stress of the Newtonian liquid outside
the drop, at the drop surface, can be obtained easily with the help of (2). Hence, a
dimensionless form of the normal stress balance reduces to:

P (0, t)+2wλ

∫ z

0

1

R

[
z

R
+

1

R3

∂

∂t

∫ z

0

R2 dz

]n

dz+ 1
2
Re z2 − 2

R

∂R

∂t
−2

(
1+

z

R

∂R

∂z

)
=

1

CaR
.

(11)

Note that for simplicity we have omitted all subscripts. In (11), and in what follows
throughout the paper, the pressure is rendered dimensionless with respect to the
characteristic stress outside the drop (µG), where µ is the viscosity of the Newtonian
fluid outside the drop, all the lengths with respect to the radius of a sphere of an
equal volume (a), and t is scaled by 1/G. The viscosity ratio, the Reynolds number
and the capillary number are defined as follows:

λ =
mGn−1

µ
, Re =

ρGa2

µ
, Ca =

µGa

σ
. (12)

Equation (11) must be solved with the following three conditions: an initial drop
shape: R(z, 0); a vanishing radius at the end of the drop: R(L, t) = 0 (see figure 1);
and the requirement that the volume of the drop be conserved:∫ L

0

R2 dz = 2
3
. (13)

Following Hinch (1980), a formal expression connecting the pressure at the centre
of the drop to the dynamic evolution of the drop shape can be obtain by combining
(11), (13) and its vanishing time derivative, whence:

P (0, t) = 1

+

1

Ca

∫ L

0

R dz − Re

2

∫ L

0

R2z2 dz − 2wλ

∫ L

0

R2

[∫ z

0

1

R

(
z

R
+

1

R3

∂

∂t

∫ z

0

R2 dz

)n

dz

]
dz∫ L

0

R2 dz

.

(14)

Note that according to Hinch (1980), the numerical integration of the last equation,
for the case of an inviscid drop in creeping flow, becomes unstable if the integral in
the denominator is replaced by the value 2/3.

In order to eliminate the unknown internal pressure at the centre of the drop, (11)
can be differentiated with respect to z to give:

2
∂2R

∂z∂t
− 2

R

∂R

∂z

∂R

∂t
+ 2z

∂2R

∂z2
− 2

z

R

(
∂R

∂z

)2

+

(
2 − 1

CaR

)
∂R

∂z
− Re zR

= 2wλ

(
z

R
+

1

R3

∂

∂t

∫ z

0

R2 dz

)n

. (15)
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The following considerations are made for steady-state conditions. Equation (10)
suggests that the normal viscous stress exerted by the external fluid O(µG) must be
balanced by the surface tension stress O(σ/R) leading to R ∼ O(1/Ca). It follows
from (13) that L ∼ O(Ca2). All the steady terms on the left-hand side of (15),
except the inertia term, are O(R/L) and when they are balanced with the term
on the right-hand side, which is O[λ(L/R)n], we obtain Caλ1/[3(1+n)] ∼ O(1). On the
other hand, when the inertia term, that is O(ReLR), is compared with the other
terms we have CaRe1/4 ∼ O(1). Thus, this order of magnitude consideration suggests
that the normalized half-length of the drop L/Ca2 must be a function of two
dimensionless strengths of the flow: f1 = CaRe1/4 and f2 = Caλ1/[3(1+n)]. Furthermore,
in order to obtain a slender drop (R/L � 1) the following conditions must also be
met: Ca3 � 1, λ1/(1+n) � 1, λCa3n � 1, and ReCa � 1. In terms of the aspect ratio of
the drop, ε = R/L, the theory holds for small viscosity ratio λ∼ ε1+n, large capillary
number Ca ∼ ε−1/3, and small Reynolds number Re ∼ ε4/3. For a Newtonian drop
with n= 1, the scaling reduces to those uncovered by Acrivos & Lo (1978).

The above dimensional consideration suggests a definition of the following rescaled
variables: y = RCa and x = z/Ca2, both having the order of magnitude of 1, and (15)
becomes:

2
∂2y

∂x∂t
− 2

y

∂y

∂x

∂y

∂t
+ 2x

∂2y

∂x2
− 2

x

y

(
∂y

∂x

)2

+

(
2 − 1

y

)
∂y

∂x
− f 4

1 xy

= 2wf
3(n+1)
2

(
x

y
+

1

y3

∂

∂t

∫ x

0

y2 dx

)n

, (16)

with an initial shape y(x, 0) and satisfying:

y(xL) = 0, (17)∫ xL

0

y2 dx = 2
3
, (18)

with xL =L/Ca2. Note that the above definitions simplify the problem since the
governing equation is now a function of three parameters (n, f1, f2) instead of four
(n, λ, Re, Ca).

At steady state, the time-derivative terms in (16) vanish and the radius at the centre
of the drop can be expressed as:

y(0) =
1

2ν
, (19)

ν = 1
2
P (0) − 1, (20)

and where P (0) is the steady pressure at x = 0.
For a stationary drop, y(x) decreases monotonically. Indeed, at the end of the drop

y(xL) = 0 and y(x) > 0 for x < xL. Hence, y(x) decreases at least in some interval.
If it is not a decreasing function everywhere, then at some x0 > 0, y(x0) achieves
a maximum, where y ′(x0) = 0 while y ′′(x0) < 0. However, it follows from (16) that
y ′′(x) > 0 as soon as y ′(x) = 0 and hence an intermediate maximum between y(0) and
y(xL) cannot exist.

Next, the solution for a bubble (an inviscid drop) and a Newtonian drop are
revisited (Acrivos & Lo 1978), where we offer a new presentation of the solution in
which external inertia is included.
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3. A bubble in a Newtonian liquid
For an inviscid drop λ= 0 and at steady state the pressure inside the bubble is

constant. Equations (11) and (20) are combined to give in the scaled variables:

x
dy

dx
−

(
ν + 1

4
f 4

1 x2
)
y = − 1

2
. (21)

The solution of (21), subject to the boundary condition (17), is of the form:

y = 1
4
exp

(
1
8
f 4

1 x2
)[

E1+ν/2

(
1
8
f 4

1 x2
)

−
∣∣∣∣ x

xL

∣∣∣∣
ν

E1+ν/2

(
1
8
f 4

1 x2
L

)]
, (22)

where Eq(x) is the exponential integral function defined by:

Eq(x) =

∫ ∞

1

exp(−xt)

tq
dt. (23)

The solution in (22) is identical to that given by Acrivos & Lo (1978), but is presented
in a slightly different form as they used the generalized incomplete gamma function
whereas we use integrals of the form of (23). Under creeping flow conditions, Re = 0,

f1 = 0, E1+ ν/2(0) = 2/ν, and (22) reduces readily to Buckmaster’s (1972) expression:

y =
1

2ν

(
1 −

∣∣∣∣ x

xL

∣∣∣∣
ν)

. (24)

Substituting the last equation into (18) results in:

xL = 4
3
(ν + 1)(2ν + 1). (25)

Recall that, by solving the solution near x → 0 and a stability analysis, Acrivos & Lo
(1978) showed that only ν =2 results in a stable shape. Hence, under creeping flow
conditions the shape of the bubble is a parabola with pointed ends and with xL = 20.

When the inertia term in the liquid outside the bubble is included, a combination
of (22) and (18) is required since for every value of ν there is one value of f1

and one value of xL. Following Acrivos & Lo (1978) and their requirement of an
analytic solution at x =0, this search can be facilitated by employing the following
transformation:

η = f 4
1 x2 (26)

by which (21) and (17) become:

2η
dy

dη
−

(
ν +

1

4
η

)
y = − 1

2
, (27)

y(ηL) = 0. (28)

Here ηL is the value of η at the end of the bubble. Note that the above transformation
eliminates the parameter f1 from the governing equation. Thus for a choice of ν, the
solution is marched from η =0 where y = 1/(2ν), until ηL where y = 0, and the value
of f1 can be calculated from the volume conservation that attains the form:

f1 =

(
3
4

∫ ηL

0

y2η−1/2 dη

)1/2

. (29)
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Figure 2. The deformation curve of a bubble: the solid line is the exact numerical solution;
the dashed line is the approximated analytical solution.

We next follow a procedure applied by Favelukis et al. (2005) and express the
solution of (27) as a power series in the transformed variable η:

y(η) =

∞∑
k=0

bkη
k (30)

where the coefficients are given by:

bk =
(−1)k

22k+1
k∏

j=0

(ν − 2j )

. (31)

Note that ν = 2j with j = 0, 1, 2, 3, . . . are all singular points and the domain of
solutions contains several lobes depending on the values of the parameter ν. According
to Acrivos & Lo (1978), the first solution is obtained at 2 < ν < 4, the next solution is
at 6 <ν < 8, and so on. The deformation curve of xL vs. f1 of the first lobe (2 < ν < 4)
is plotted in figure 2 (the solid line) where 30 terms were used in (30). We define the
term lobe in this work as a line that starts at a specific value of f1 (or f2 in § 4) and
ν. As the parameter ν increases, the line turns back on itself at a bifurcation turning
point and finally, terminates at the original value of f1 (or f2). The lobe contains two
branches separated by a bifurcation turning point in which f1 is maximum (f1,max).
Acrivos & Lo (1978) argued (see also § 7 below) that, along the lower branch, the
deformation is stable while the upper branch represents an unstable situation. Thus,
the point f1,max is considered as the breakup point. The numerical results suggest that
at this point: ν =2.54, xL = 30.0, and f1 = 0.207. Recall that in the absence of inertia,
an inviscid drop does not break. It should be noted that a bubble or a drop does not
break as soon as the limit of stability is reached. Once it reaches the limit of stability,
a finite amount of time will elapse before breakup can occur.
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A relatively simple approximation can be obtained by considering the first two
terms of (30) which, together with the condition given by (28), gives:

ηL ≈ 4(ν − 2), (32)

with this result, the dimensionless parameter f1 can be readily calculated from (29):

f1 ≈
√

2

5

(ν − 2)1/4

ν
, (33)

and the half-length of the bubble is xL = 5ν2, a typical result for a parabolic profile.
The breakup point (the maximum value of f1) can be evaluated from (33). The

approximated parameters at the breakup point are ν = 8/3 = 2.67, xL = 35.6 and
f1 = 0.214. The deformation curve of the two terms approximation is plotted in
figure 2 in the form of a dashed line. Clearly, this approximation is in excellent
agreement with the exact numerical results up to the breakup point and deviates from
it along the unstable branch.

4. A drop in a Newtonian liquid
We begin this section with preliminary considerations by introducing steady-state

asymptotic solutions near the centre and at the end of the drop, and by suggesting a
variable transformation to facilitate the solution of (16).

4.1. Asymptotic expansion near the centre and near the end of the drop

At the centre of the drop, under steady-state conditions, the radius of the drop is
y(0) = 1/(2ν). Near the centre of the drop (x → 0), we define a small deviation from
this value in the form of:

ε(x) =
1

2ν
− y(x). (34)

Substituting the above definition into the steady (16) and discarding terms that are
O(ε2) or higher we obtain near the drop centre:

−x
d2ε

dx2
+ (ν − 1)

dε

dx
− 1

4ν
f 4

1 x = 2nνnwf
3(n+1)
2 xn. (35)

This last equation can be solved under the condition that ε(0) = 0 to give:

ε =
2nνnwf

3(1+n)
2 x1+n

(1 + n)(ν − n − 1)
+

f 4
1 x2

8ν(ν − 2)
+ C

xν

ν
, (36)

where C is an integration constant. The slope near the centre of the drop,

dy

dx
= −2nνnwf

3(1+n)
2 xn

(ν − n − 1)
− f 4

1 x

4ν(ν − 2)
− Cxν−1, (37)

deserves further attention.
For a Newtonian drop (n= 1) we have a singular point at ν = 2. When ν > 2, the

last term on the right-hand side of (37) can be neglected compared to the other
two terms. Therefore, for n= 1, if ν > 2, the slope of y near x =0 is negative. For a
non-Newtonian drop, the two singular points are at: ν = n+ 1 and ν =2. If ν > n+1
and n< 1 (shear thinning fluid) the leading term on the right-hand side of (37) is
the first one, while if n> 1 (shear thickening) the dominant term is the second one.
Thus, in either case the slope is negative. This characteristic, for n< 1, was found for
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drops under creeping flow conditions (Favelukis et al. 2005) and it appears that the
addition of inertia does not affect it.

Close to the end of the drop (x → xL), we may assume the following steady radius
profile:

y = B

(
1 − x

xL

)α

. (38)

Here we define α and B as positive. The three possible cases α > 1, α = 1 and
α < 1 correspond to a cusped end, a pointed end and a rounded end, respectively.
Substituting the above expressions into the steady part of (16), results in the following
conclusions: for Newtonian and pseudoplastic fluids (n � 1), α =1, and the drop has
pointed ends. For shear thickening fluids (n> 1) there is no solution. These conclusions
are similar to those found in the creeping flow case (Favelukis et al. 2005). The leading
terms near the end of the drop of the steady (16) are:

−2
x

y

(
dy

dx

)2

− 1

y

dy

dx
= 2wf

3(n+1)
2

(
x

y

)n

. (39)

Note that the inertia term does not contribute to the end shape of the drop. For a
Newtonian fluid n= 1, all the terms are of the same order of magnitude. For the case
n < 1, the viscous term in (39) can be neglected as well. Thus, upon solving (39) and
(17) we obtain B = 1/2 for n< 1, and B = [1 + (1 − β2

L)1/2]/4 where βL = 8f 3
2 xL for

the case where n= 1.
Before ending this section we should note that the slender-body approximation

(R/L � 1) may not be accurate near the stagnation point (x = 0) and close to the end
of the drop (x = xL). For a detailed discussion, see Favelukis et al. (2005).

4.2. The transformation

The case of a viscous drop involves a three-dimensional search since every value of
ν assigns values to each of the parameters f1, f2 and xL. The number of parameters
can be reduced using the following transformation (Favelukis et al. 2005):

φ = f
3(n+1)
2 xn+1, (40)

and our problem, defined in (16), reduces to:

2(n + 1)
∂2y

∂φ∂t
− 2(n + 1)

1

y

∂y

∂φ

∂y

∂t
+ 2(n + 1)2φ

∂2y

∂φ2
− 2(n + 1)2

φ

y

(
∂y

∂φ

)2

+ (n + 1)

(
2n + 2 − 1

y

)
∂y

∂φ
− hyφ(1−n)/(1+n)

= 2wφ−n/(n+1)

[
φ1/(n+1)

y
+

1

(n + 1)

1

y3

∂

∂t

∫ φ

0

y2φ−n/(n+1) dφ

]n

, (41)

subject to the initial shape y(φ, 0) (or (19) at steady-state), the conservation of volume,
(18), and:

y(φL) = 0. (42)

Here the dimensionless parameter h, characterizing inertia, is defined as:

h =
f 4

1

f 6
2

=
Re

Ca2λ2/(n+1)
. (43)

With this transformation, the governing equation (41) is a function of two
parameters (h, n) instead of three (f1, f2, n) as in (16). For each choice of h,
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h ν f1 f2 xL

0 2.4 0 0.148 28.8
1 2.40 0.0568 0.148 28.8

10 2.41 0.0997 0.146 28.9
100 2.44 0.160 0.137 29.0

1000 2.51 0.198 0.107 29.7
∞ 2.54 0.207 0 30.0

Table 1. Exact parameters at breakup point for a bubble and a Newtonian drop.

the volume conservation can be calculated from (18) and (40) to give:

f2 =

[
3

2(n + 1)

∫ φL

0

y2φ−n/(n+1) dφ

]1/3

. (44)

Under steady-state conditions, the mathematical procedure described in this section
allow us to obtain, for a specific value of h, a numerical solution where the only guess
is the parameter ν. The parameter h spans a wide domain where h → 0 is the creeping
flow limit while h → ∞ denotes the case of an inviscid drop.

5. A Newtonian drop in a Newtonian liquid
For a Newtonian drop (n= 1) in a Newtonian liquid under steady-state conditions,

(41) reduces to:

8φ
d2y

dφ2
− 8

φ

y

(
dy

dφ

)2

+ 2

(
4 − 1

y

)
dy

dφ
− hy =

8

y
, (45)

where h = Re/(Ca2λ) and φ = f 6
2 x2. As in the case of a bubble, the solution can be

obtained by expressing it as a power series of φ:

y(φ) =

∞∑
k=0

bkφ
k, (46)

where the first few coefficients are given by:

b0 = +
1

2ν
, b1 = − (h + 32ν2)

8ν(ν − 2)
, b2 = +

h(h + 32ν2)

32ν(ν − 2)(ν − 4)
,

b3 = − h(h + 32ν2)(3h + 32ν2)

384ν(ν − 2)(ν − 4)(ν − 6)
,

and the general recurrence relation for these coefficient is:

bj =
ν

2j (ν − 2j )

j−1∑
k=0

[8(2k − j )kbj−k − hbj−k−1]bk (j � 2). (47)

The singular points at ν = 0, 2, 4, 6, . . . suggest the existence of multiple lobe
solutions. The deformation curve of xL vs. f2 for various values of h and for the first
lobe (2 < ν < 4) is plotted in figure 3(a) where 15 terms were used in (46). A summary
of the numerical results, at the bifurcation turning point (breakup point), is given in
table 1. We find that as the contribution of external inertia increases, f2,max decreases,
and drop breakup is enhanced.



144 M. Favelukis, O. M. Lavrenteva and A. Nir

0 0.05 0.10 0.15 0.20
f2

10

20

30

40

50

60

70

80
(b)

(a)

0101001000

0 0.05 0.10 0.15 0.20
10

20

30

40

50

60

70

80

xL

xL

0

1

101001000

Figure 3. Deformation curves of a Newtonian drop, for different values of h: (a) is the exact
numerical solution; (b) is the approximated analytical solution.

As in the case of a bubble, a useful approximation can be obtained by considering
the first two terms of (46) which, together with the condition given by (42) result
in:

φL ≈ 4(ν − 2)

h + 32ν2
. (48)

From (44), we obtain:

f2 ≈
(

2

5

)1/3

ν−2/3

(
ν − 2

h + 32ν2

)1/6

, (49)

and by incorporating the last two equations into (40), the half-length of the drop is
found to be xL = 5ν2, which is a typical result for a parabolic profile.
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h ν f1 f2 xL

0 2.4 0 0.148 28.8
1 2.40 0.0568 0.148 28.8

10 2.41 0.0998 0.147 29.0
100 2.46 0.162 0.138 30.3

1000 2.60 0.204 0.110 33.7
∞ 2.67 0.214 0 35.6

Table 2. Approximated parameters at breakup point for a bubble and a Newtonian drop.

The breakup point (the maximum value of f2) can be obtained from (49). The
asymptotic cases are:

(ν)h→0 = 2.4 + 0.000868h, (50)

(ν)h→∞ = 2.67 − 101

h
. (51)

We conclude that the approximate value of ν, at the breakup point, is in the range
of 2.4–2.67, and it is not very sensitive to the values of h. For comparison, the exact
values are 2.4 (for a drop in creeping flow) and 2.54 (for a bubble with inertia).
The approximate solution is plotted in figure 3(b) (the dashed lines). It suggests an
excellent agreement with the exact numerical results up to the bifurcation turning
point (breakup point), see also tables 1 and 2. It should be born in mind that under
creeping flow conditions where h = 0, the O(φ) result is actually the exact result.

The approximate values of f2 at the breakup point are obtained by combining (50)
and (51) with (49). Hence:

(f2,max)h→0 = 0.148 − 0.000134h, (52)

(f2,max)h→∞ =
0.358

h1/6
− 13.6

h7/6
. (53)

We find that, 0 � f2,max � 0.148, where the upper limit corresponds to a drop under
creeping flow conditions (h = 0), and as the inertia contribution (or h) increases, f2,max,
decreases. Thus, once again, external inertia tends to facilitate the breakup of the
drop.

6. A non-Newtonian drop in a Newtonian liquid
The steady-state shape of a non-Newtonian drop in a Newtonian liquid can be

obtained from (41):

2(n+ 1)2φ
d2y

dφ2
− 2(n + 1)2

φ

y

(
dy

dφ

)2

+ (n + 1)

(
2n+ 2 − 1

y

)
dy

dφ
− hyφ(1−n)/(1+n) =

2w

yn
.

(54)

Two approaches were used to solve this governing differential equation. The first one
expresses the solution as an analytic power series expansion about the centre of the
drop. The accuracy of this solution depends on the number of terms used, and close
to the break-up point we found that this solution became less accurate (especially
near the end of the drop). The second approach employs a straightforward two-point
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Figure 4. Deformation curves of a non-Newtonian drop, for the case n = 0.5. The solid line
is the case h =0 and the dashed line is the case h = 1.

BVP procedure for the nonlinear equation. In both approaches the asymptotically
calculated data (see § 4.1) must be satisfied and the volume must be conserved.

Under creeping flow conditions (h = 0), the solution to (54) can, thus, be expressed
as a power series in φ (see (46)). The coefficients which are given in Favelukis et al.
(2005), suggest singular points at ν = j (n+ 1) with j = 1, 2, 3, . . . and, similar to the
previous cases discussed above, multiple lobes of solutions were found. The first lobe
is obtained at (n+ 1) <ν < 2(n+ 1), the next solution at 3(n+ 1) < ν < 4(n+ 1), and
so on.

The deformation curves of xL vs. f2 of the first two lobes, in the creeping flow
case, is shown by the solid lines in figure 4 for the case n= 0.5. The dashed curves
show the additional branches that results from inertia, at h = 1, for comparison. Each
solid lobe contains two branches separated by a bifurcation turning point at which
f2 is maximum (f2,max). In Favelukis et al. (2005) it was shown that, for the case of
creeping flow (h = 0), at the turning point of the lowest lobe the global maximum
of f2 is achieved, i.e. no stationary solution exists at a larger f2. It was assumed
that under such conditions the drop will eventually break up, and the point where
f2 attains a maximum was referred to as the breakup point. It was assumed also
that the deformation is stable along the lower branch of the lowest lobe while the
other branches represent unstable configurations. These assumptions were inferred in
Favelukis et al. (2005) from the analysis of Acrivos & Lo (1978) for the Newtonian
drop, but were not proved there. In § 7, we demonstrate via a linear stability analysis
that these assumptions were in fact correct.

The report in Favelukis et al. (2005) contains also some approximations which can
be very useful for fast estimations. Some practical expressions for the breakup point,
in the range 0.25 � n � 1, are:

f2,max = Caλ[1/3(1+n)] = 0.148 + 0.0454(1 − n), (55)

xL = 28.8 − 16.4(1 − n). (56)
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Figure 5. Deformation curves of Newtonian and non-Newtonian drops, for different values
of h: (a) n =0.25, (b) n= 0.50, (c) n= 0.75 and (d) n= 1.

Next we turn to the influence of external inertia, h �= 0, at steady state. Since the
solution to (54) can no longer be expressed as integer power series in φ, we introduce
a double series expansion, for n �= 1, of the form of:

y(φ) =

∞∑
k=0

(bkφ
k + ckφ

kp). (57)

When h = 0, the creeping flow solution presented in Favelukis et al. (2005) is recovered.
The coefficient p depends on n, and when the power law has a rational exponent,
n= n1/n2, p is constructed as p =1/(n1 + n2). It is obvious that when kp is zero or
an integer, then the appropriate ck must vanish. According to (34) and (36), the first
three coefficients are:

b0 = +
1

2ν
, b1 = − 2nνnw

(1 + n)(ν − n − 1)
, c2n2

= − h

8ν(ν − 2)
. (58)

The coefficients bk and ck have many singular points and the first three in ascending
order are: ν = (n+ 1), ν =2 and ν = 2(n+ 1).

For h > 0, the map of branches of the solutions to (54) becomes more complicated
as is illustrated in figure 5 for various values of n. It contains families of lobes in which
f2 attains a bifurcation turning point for each choice of h, and the family of lobes is
preceded by a family of one-sided bifurcating and h dependent solutions in which xL

increases until a solution can no longer be attained (open curves). Although in the
figure we depict deformation curves of xL vs. f2 only for the range (n+ 1) < ν <
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2(n+ 1), the pattern is repeated in higher lobes as well, as was previously seen in
figure 4. The open curves contain the solution for (n+ 1) <ν < 2 while the lobe shaped
curves span the range of 2 <ν < 2(n+ 1) for each choice of h. The merged case at
h =0 (also shown in the figure) separates the two families. The unique case where
n=1, is also shown in the figure for comparison.

The open curves have an S-like shape at small h (see e.g. h = 1 curve in figure 5a),
first going along the h = 0 curve repeating its turning point at almost the same f2

and turning once more afterwards. Thus at some interval of parameter three different
solutions, having the same value of f2 corresponding to the open branch, can be
found. These S-shaped curves are typical for systems with hysteresis and we discuss
the possibility of the existence of this phenomenon below. Note that in contrast to
f2, the values of parameter ν grow monotonically along each curve in figure 5 and it
is, thus, convenient to use this parameter to characterize a point on the curve.

Another unusual feature of the open curves is that they apparently stop at some
point corresponding to ν < 2. In the vicinity of this point, however, sharp increases
of xL are encountered with vanishing small changes in f2 and the drop becomes
highly elongated. There are two possibilities: either the curve has a vertical asymptote
(xL → ∞), or it simply stops at some critical elongation having a vertical slope at
that point. At this moment, our results cannot distinguish between these two cases.
Nevertheless, the existence of critical values of ν and f2 beyond which the solution
cannot be continued is obvious. Furthermore, these are intimately close to the ones
where our computations stop, since at this point the slope of the curve is already
extremely high. This value will be addressed as a breakup point in the cases when the
stability analysis shows that the solution is stable for any lower f2 (at large values
of h).

We shall demonstrate below via a linear stability analysis that only the first open
family of solutions has a stable branch in the range (n+ 1) <ν < 2. These solutions
become unstable or cease to exist at some ν < 2. Furthermore, all other solutions,
lobes and open branches, appear to be linearly unstable. Figure 6 shows steady-state
(stable and unstable) drop shapes, for the case n= 0.5 and h = 1. The shapes cover
both the open branch and the closed lobe of the first family of solutions.

The results presented in figure 5 are somewhat similar to the close problem of drop
deformation in an external electrical field (Sherwood 1988; Basaran & Scriven 1989).
A drop in an electric field exhibits some of the behaviours found in our work such
as stable and unstable stationary solutions and the possibility of hysteresis which will
be discussed later on. Similarities and differences in the shapes of the drops in an
electrical field and in viscous flow are further addressed in the conclusion section.

7. The stability of the solution
In order to find the range of ν where stable solutions are located we follow

Acrivos & Lo (1978) and analyse the stability to small disturbances of the shapes
calculated above for bubbles and drops.

7.1. A bubble in a Newtonian liquid

For the case of a bubble (f2 = 0), the dynamics is described by the transformed form
of (16):

4
∂2y

∂η∂t
− 4

y

∂y

∂η

∂y

∂t
+ 8η

∂2y

∂η2
− 8

η

y

(
∂y

∂η

)2

+ 2

(
4 − 1

y

)
∂y

∂η
− y = 0. (59)
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Figure 6. Steady-state (stable and unstable) drop shapes, for the case n= 0.5 and h = 1,
of the first family of solutions. (a)–(f ): open branch; (g)–(h): lobe.

Let

y(η, t) = y0(η) + y1(η, t), (60)

where y0 is the steady solution and y1 is a small axisymmetric perturbation from the
steady shape (y1 � y0). Combining (59) and (60) and keeping only terms of O(y1)
result in the linear homogeneous equation for y1:

4
∂2y1

∂η∂t
− 4

y0

dy0

dη

∂y1

∂t
+ 8η

∂2y1
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− 8
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+

[
8

η

y2
0

(
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)2
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2

y2
0
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dη
− 1

]
y1 = 0, (61)

which, upon setting y1 = g(η) exp(δt), becomes:

8η
d2g

dη2
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4 + 2δ − 1
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− 8
η
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dg
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4
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)
2

y0
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]
g = 0.

(62)
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Figure 7. The stability of the solution of a bubble and a Newtonian drop, for different
values of h.

The solution to (62) is represented as a power series:

g(η) =

∞∑
k=0

dkη
k, (63)

where we set d0 = 1 without loss of generality. Finally, the conservation of volume,
given by (18), requires, upon differentiation with respect to time, that∫ xL

0

y0y1dx =

∫ ηL

0

y0gη−1/2 dη = 0. (64)

The eigenvalues δ are determined from (64). Below we are interested in the eigen-
value δ with the highest real part Re δ, since it determines the large time behaviour
of an arbitrarily perturbed drop. When Re δ is negative, small disturbances decay
with time, whereas a positive Re δ indicates an unstable physical situation. The point
where Re δ =0 separates the regions of stability and instability in the parametric
space. Again, it can be anticipated that unstable drops will eventually break up and
we, therefore, address the points where Re δ = 0 as breakup points.

In figure 7, we have plotted the value of Re δ as a function of the parameter ν

for a bubble and for a Newtonian drop. Note that in these cases δ is real. The case
relevant to the bubble is depicted as the curve h = ∞. As expected, negative values
of δ (stable solutions) are obtained in the range: 2 < ν < 2.54, and positive values
of δ (unstable solutions) are obtained when 2.54 <ν < 4. Thus, our linear stability
analysis confirms the argument in Acrivos & Lo (1978) that the bifurcation turning
point ν =2.54, where f1 obtains its maximum value, is the breakup point. It should
be noted that δ was found to be positive for all other lobes of branches having
ν > 4 that we have checked and thus no other stable shapes having a larger xL are
expected.
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7.2. A drop in a Newtonian liquid

With a procedure similar to the one used in the case of a bubble, but employing the
transformation in (40), (41) results in the linear equation for the small disturbance y1:
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]
, (65)

which, by setting y1 = g(φ) exp(δt) is transformed into:
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Here, in view of the expansion of the steady solution (y0), the required power series
is of the form:

g(φ) =

∞∑
k=0

dkφ
kp, (67)

where we set d0 = 1 and with p as in (57), except for a Newtonian drop where p = 1.
The conservation of volume yields:∫ xL

0

y0y1 dx =

∫ φL

0

y0gφ−n/(n+1) dφ = 0. (68)

The results for a Newtonian drop are presented in figure 7, which shows the value
of δ, which is real in this case, as a function of the parameter ν, for different values
of h. The linear stability analysis confirms again that the values of ν, at the breakup
point where δ = 0, coincide with the values of ν at the bifurcation turning point where
f2 obtain its maximum (see figure 3a and table 1).

Figure 8 shows the results for the case of non-Newtonian drops under creeping
flow conditions (h = 0) at different values of n. Recall that for the case h = 0 it was
assumed in Favelukis et al. (2005), based on the analysis of Acrivos & Lo (1978)
for Newtonian drops, that the lower branch of the lowest lobe is stable and that the
drops lose stability at the bifurcation turning point when f2 attains a maximum. The
results of this linear stability analysis confirm these assumptions to be correct.

The results presented for non-Newtonian drops at various values of h are shown in
figure 9 for two values of n. Our computations reveal that the first eigenvalue is real
for small ν up to some critical value ν, above which it acquires a non-zero imaginary
part. In figure 9, the solid lines represent δ which possess real values only, while the
dashed lines represent real parts of complex eigenvalues δ with a non-zero imaginary
part. In figure 5, the lowest branch of the first open family of solutions, located in the
range (n+ 1) <ν < 2, can be classified into two categories: those with (relatively) low
values of h, which contain two bifurcation turning points or an inflection point, and
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Figure 8. The stability of the solution of a non-Newtonian drop under creeping flow
conditions (h = 0), for different values of n.

those with (relatively) high values of h; having neither turning nor inflection points.
From figure 9, we conclude that for low values of h, stable and unstable families of
stationary solutions, similar to the results depicted in figures 7 and 8, are separated
at the breakup point. On the other hand, at high values of h, we have observed that
as long as a solution can be calculated, it was found to be stable. Thus, the point at
which a solution can no longer be attained is considered to be the breakup point.
It is not clear whether the last observation, at high values of h, reflects a physical
transition or is the manifestation of numerical difficulties near the breakup point
where the slope in figure 5 becomes infinite. If the curves in figure 5 do not actually
stop but do have a vertical asymptote at some f2, it is natural to expect that the
curves in figure 9 do not stop but exhibit a vertical asymptote corresponding to a
certain ν. In such a case, the curve will probably intersect the line Re δ = 0 at some
breakup point. Nevertheless, as was argued above, the values of ν and f2 at this
point will be close to those obtained at our stop points, and thus provide a good
approximation of the breakup criterion. Note that for the case of a non-Newtonian
drop with inertia, Re δ was found to be positive for all other lobes and open branches
with ν > 2. Thus, a region of stable solution can be found only along the lowest open
branch.

Two other interesting observations can be extracted from figure 9. First, the existence
of complex eigenvalues δ with a non-zero imaginary part, suggests the possibility of
oscillations, which is often the case in the vicinity of stop points. Thus, the findings in
figure 9 for the case of a non-Newtonian drop under the influence of external inertia,
may suggest the existence of more than one type of breakup mechanism. Secondly,
there exists a region in parametric space where hysteresis is possible. For example,
the cases: n= 0.25, h = 8.2, and n= 0.50, h = 0.28 are plotted again in figure 10 in
the form of the deformation curve, where an enlarged section of the region with two
bifurcation turning points is presented.

S-like curves are typical for the classical case of hysteresis, where the lower and
upper branches correspond to stable solutions while the intermediate one corresponds
to an unstable configuration (see e.g. Sherwood 1988; Wohlhuter & Basaran 1992,
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Figure 9. The stability of the solution of a non-Newtonian drop, for different values of h.
(a) n= 0.25, (b) n = 0.50. The solid lines represent real values of δ without an imaginary part;
the dashed lines represent real values of δ with an imaginary part.

where this phenomenon is found in a similar problem of deformation of a drop in an
electrical field). In this case, when moving along the lower branch by increasing the
parameter, upon reaching the first turning point the solution will jump to the upper
stable branch. Similarly, on decreasing the parameter along the upper branch down
to the second turning point, the solution jumps from the upper branch to the lower
one. This presents a complete cycle of hysteresis. In our case, however, the situation is
more complicated since the solution is not stable along the entire range of the upper
branch.

The solid line in figure 10 corresponds to stable solutions, while the dashed line
marks unstable solutions. The solid circle is placed where the imaginary part of δ

starts. It is evident that the upper branch loses stability at a value of f2 that is
smaller than that corresponding to the first turning point. Thus, above this value no
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Figure 10. Multiplicity in the deformation curve of a non-Newtonian drop. (a) n= 0.25,
h =8.2; (b) n= 0.50, h = 0.28. Stable solutions are depicted by solid curves, while the dashed
lines indicate unstable solutions. The solid circle is placed where the imaginary part of δ first
appears.

stable solution exists and the drop at a larger f2 should break up. In this case, it
is natural to address the first turning point as the break up criterion. On the other
hand, if the solution is chosen at the stable part of the upper branch and the value
of the parameter decreases down to and below the second turning point, the solution
jumps from the upper branch to the lower one. Thus, we observe the possibility of a
non-classical ‘one-sided hysteresis’.

Note that for values of h lower than those depicted in figure 10, the S-like form
of the deformation curve may appear more pronounced, but the region of stability
on the upper branch shrinks and, furthermore, below some critical h it does not exist
at all. If, however, the value of h is increased beyond the one depicted in the figure,
the value of f2 at the second turning point approaches that of the first one and the
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Figure 11. The critical value of the parameter ν at the breakup point as a function of h, for
different values of n. The solid lines represent drops having both stable and unstable stationary
solutions in the open branch. The dashed lines represent cases for which only stable stationary
solutions were obtained on the open branch.

h ν f1 f2 xL

0 1.64 0 0.182 16.7
1 1.65 0.0778 0.182 16.8

10 1.80 0.142 0.185 19.8
100 1.59 0.341 0.226 −

1000 1.34 0.470 0.191 −

Table 3. Exact parameters at breakup point for a drop with n =0.25.

h ν f1 f2 xL

0 1.90 0 0.171 20.4
1 1.94 0.0713 0.172 21.4

10 1.92 0.141 0.184 21.9
100 1.73 0.302 0.209 −

1000 1.55 0.424 0.179 −

Table 4. Exact parameters at breakup point for a drop with n =0.50.

S-like form of the deformation curve becomes less pronounced. At the same time, the
second region of stability on the upper branch is extended and, above some critical
value of h, the value of f2 corresponding to the second loss of stability becomes larger
than that of the first turning point. In this case, a classical hysteresis is possible. With
the further increase of h, the two turning points merge into an inflection point and
above this value the deformation curve is monotonic.

In figure 11 (see also tables 1 to 4), we present the critical value of the parameter νcr

corresponding to the first loss of stability as a function of h for different values of the
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power law index n. For a Newtonian drop (n= 1), as the influence of inertia increases,
h increases, νcr slightly increases and f2 decreases. Hence, the increasing inertia results
in obtaining breakup at a lower strength of the flow (f2). On the other hand, the
situation in a shear thinning drop (n< 1) is more complicated. While for relatively
low h values the loss of stability occurs at the first turning point and the trend in the
dependence of νcr on h is as described above, at some critical value of h, which reflects
the topological change in the deformation curve mentioned above, νcr jumps to the
value corresponding to the second loss of stability. For high h values, the dependence
of νcr on h is reversed. Physically, as suggested above, the change in behaviour may
indicate that there exist two different competing mechanisms that render the drop
shape unstable. Such behaviour was also reported by Sherwood (1984). For some
cases, it was found that the drop is pinching at its centre, where z =0, while for other
cases the drop showed unrestricted elongation with time and eventual evolution of
cusp ends that may indicate the beginning of breakup via pinching. The two (νcr , h)
domains in figure 11 are distinguished by solid and dashed lines, respectively. Note
also that, contrary to the case of a Newtonian drop, f2 obtains a maximum value
at h ∼ 100 (See tables 3 and 4). Thus, for shear thinning drops, the influence of
increasing inertia results first in preventing, and then in facilitating, drop breakup.
Since our stability analysis is linear and only predicts reaction to small disturbances,
no prediction of drop breakup mechanism is possible at this stage and it awaits a
numerical study of the dynamic drop shape evolution in the various unstable cases.

8. Conclusions
The deformation and breakup of bubbles (inviscid drops), Newtonian drops and

non-Newtonian drops in a Newtonian liquid in an axisymmetric extensional flow have
been studied theoretically. This paper extends our previous creeping flow analysis
(Favelukis et al. 2005), by exploring the effects of inertia in the continuous phase, and
by performing a stability analysis of the shapes obtained.

The case of a bubble was first treated in the literature by Acrivos & Lo (1978),
where they found multiple stationary solutions in the form of many lobes. Each lobe
contains two branches separated by a bifurcation turning point. Based on a previous
case, they predicted that the lower branch of the first lobe (which describes the lowest
possible deformation) is stable while the upper branch and other lobes are unstable.
Thus, the turning point is considered as the breakup point. In this work, these results
are revisited and confirmed by employing a solution in the form of a power series,
and performing a stability analysis to small disturbances. The main result for the case
of a bubble is that, contrary to a bubble in a creeping flow, where breakup is not
predicted, a small amount of external inertia can cause the bubble to break if the
strength of the flow exceeds some critical value.

Next, we considered the influence of inertia on a Newtonian drop, a case that was
also first reported by Acrivos & Lo (1978). However, their results do not describe
the deformation of the drop, but the breakup criteria only. Here again, the shapes
and deformation patterns are presented in the form of a power series. Contrary to
the creeping flow solution which contains one lobe, the inclusion of a small amount
of external inertia results in many lobes. The stability results are similar to the
bubble case, where only shapes predicted along the lowest branch of the first lobe are
stable, while other branches and lobes exhibit instability. The main conclusion for the
Newtonian case is that as the contribution of external inertia increases, drop breakup
is facilitated.
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In addition to the exact solutions for the deformation and shapes, we provided two
term approximations for the case of a bubble and a Newtonian drop. These are found
to be in excellent agreement with the exact results up to the break-up point (point of
loss of stability). Since they result in a very simple mathematical expression, without
the need for tedious expressions or to perform complicated numerical calculations,
they should prove most useful for future fast and practical estimations of steady drop
deformations in these cases.

The last case of a non-Newtonian drop is the main contribution of this report. In
our creeping flow analysis (Favelukis et al. 2005), we reported that only Newtonian
and shear thinning drops (n � 1) with pointed ends can exist. Furthermore, we found
multiple lobe solutions and, similar to what was suggested by Acrivos & Lo (1978),
we assumed there that the stable solution should be located in the lower branch of
the first lobe. The analysis in this work reveals that the influence of adding a small
amount of external inertia does not change the shape patterns at the end of the drop,
but changes dramatically the stability of the steady shapes. The deformation phase
plane contains first an open branch and then a lobe, a structure which is repeated.
Depending on the amount of inertia, the open branch may contain one or two turning
points (less inertia) or even no turning points (more inertia). The stability analysis
shows that stable solutions can be found in part of this open branch (less inertia) or
along the entire calculated open branch (more inertia). Furthermore, a small region
of hysteresis is also predicted.

Hysteresis was found previously by Sherwood (1988) and Wohlhuter & Basaran
(1992) in a somewhat similar problem of deformation of a stationary drop in an
electrical field, where the shape of the drop is determined by electric and capillary
forces. The conservative (potential) nature of both these forces allowed the authors
to employ energy consideration and use variational techniques to predict the shape
of the drop and to obtain, under certain conditions, a classical cycle of hysteresis. In
our case, the competing forces are capillary, viscous and inertial, the latter two being
non-conservative, and the hysteresis that we have found is of a more complicated
and non-classical nature. Another exciting fact that we have found is that the loss of
stability may occur at an imaginary eigenvalue-suggesting the possible existence of
oscillatory regimes in the evolution of drop shapes.

We conclude that the effect of increasing inertia on shear thinning non-Newtonian
drops results first in preventing and then in facilitating drop breakup. The results
presented here lead us to suggest that the influence of inertia results in more than one
breakup mechanism, depending on the amount of inertia. This last point will awaits
a numerical study of the dynamic drop shape evolution at the various unstable cases.
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